Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
Effects of hyperthyroidism on lipid content and composition in oxidative and glycolytic muscles in rats
Update time:2013-08-12 19:23:00   【 Font: Large  Medium Small

Abstract

Triiodothyronine (T3) can influence lipid metabolism via multiple mechanisms, which generally result in an increase of fatty acids (FAs) oxidation. Consequently, we hypothesize that hyperthyroidism may influence intramuscular lipids accumulation. This increased intramuscular lipid turn-over is possibly accompanied by an increase in fatty acid transporters expression (FAT/CD36, FABPpm, FATP-1,4). In the present study we examined the lipid content and fatty acid saturation status of free fatty acids (FFA), triacylglycerols (TAG), diacylglycerols (DAG) and phospholipids (PL) in skeletal muscle of hyperthyroid rats (n=8). We measured also fatty acid transporters as well as AMP-activated protein kinase (pAMPK/AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), acetyl-CoA carboxylase (pACC/ACC), carnitine palmitoyltransferase I (CPT I) and citrate synthase (CS) protein expression in these muscles. In vivo T3 administration, decreased the content of FFA, particularly in the red gastrocnemius and the TAG fraction, in both the red and white portions of the gastrocnemius muscle. Concomitantly, saturated/unsaturated fatty acids (SFA/UFA) ratio was also decreased, but only in the FFA fraction, irrespectively of muscle’s fiber composition. In contrast, T3 treatment had no effect on the lipid content and saturation status in PL fraction. Triiodothyronine induced also modest activation of AMPK/ACC axis with subsequent increased expression of mitochondrial proteins: CPT I and CS. This was accompanied by increased content of FAT/CD36, but only in the red part of gastrocnemius muscle. These findings support the conclusion that hyperthyroidism increases lipid metabolism, especially in skeletal muscles with high capacity for fatty acid oxidation.

Cited products
Source:Journal of physiology and Pharmacology      by A Miklosz, A Chabowski, M Zendzian-Piotrowska
Hot Genes
Atf2 ASPRO ACE ALCAM C19orf80 Trap1a Gdf5
Top Searches
Ubiquitin-protein ligase metalloproteinase Ubiquitin ELISA Tumor necrosis Alpha Asprosin TRAP1A
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.com.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

鄂ICP备10015095号-1

鄂公网安备 42018502005535号

Twitter