Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological...
Update time:2016-09-07 00:59:00   【 Font: Large  Medium Small

Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological deficits and histological abnormalities in hippocampus region caused by olfactory bulbectomy

Abstract
Rationale
Olfactory bulbectomy (OBX) is a widely used model for antidepressant screening and known to induce neurodegeneration in several brain areas. Our earlier studies demonstrated that etazolate produced antidepressant-like effects in behavioral despair models of depression; however, the potential role of etazolate on behavior and morphological changes in the hippocampus region along with its underlying mechanism(s) following OBX has not been adequately addressed.

Objectives

We evaluated if etazolate could protect against OBX-induced depression-like behavioral deficits and neurodegeneration. The possible underlying mechanism of etazolate in OBX model was also investigated.

Methods

The effects of etazolate were measured in a battery of behavioral paradigms, including the forced swim test (FST), sucrose consumption, open arm activity in elevated plus maze (EPM), and hyperemotionality tests. The underlying mechanisms were investigated by measuring serum corticosterone (CORT), cyclic adenosine monophosphate (cAMP), cAMP response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and oxidative/nitrosative stress (lipid peroxidation and nitrite) levels and antioxidant enzymes, like reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels in the hippocampus.

Result
OBX rats showed depression-like behavior anomalies in behavioral paradigms. OBX rats also showed high CORT and decreased cAMP, phosphorylated CREB (pCREB), and BDNF levels. Additionally, we found increased oxidative/nitrosative stress and reduced antioxidant enzyme levels in the hippocampus. Histopathological analysis showed morphological changes and neuronal loss in the hippocampus. Etazolate (0.5 and 1 mg/kg) attenuated the OBX-induced behavioral, biochemical, neurobiological, and histopathological alterations.

Conclusion
The aforesaid results suggest that etazolate produces an antidepressant-like effect and neuroprotection in OBX, which is possibly mediated by modulating biochemical and neurobiological markers in the hippocampus.

Keywords
EtazolateNeuronal survivalOlfactory bulbectomyHPA axiscAMP signalingBehavioral paradigmsOxidant/antioxidant markersAntidepressant

 

Cited products
Source:Psychopharmacology      by indal A, Mahesh R, Bhatt S.
Hot Genes
Atf2 ASPRO ACE ALCAM C19orf80 Trap1a KSR2 Gdf5
Top Searches
Ubiquitin-protein ligase Ubiquitin ELISA metalloproteinase Tumor necrosis Asprosin TRAP1A Alpha
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter