Language:
  
[Sign in] [Register]   

EIAab logo

Index > paper Center > paper list.
Enter your KeyWord (Ex. ELISA Kit, Cuticular Active Peptide Factor, etc)
search
Search content in EIAab's paper.

Abstract

Background
Major symptoms of chronic obstructive pulmonary disease (COPD) are chronic bronchitis and emphysema leading from lung tissue destruction, that is an effect of an imbalance between metalloproteinases (MMPs) and their tissue inhibitors activity. As potential factor involved in this COPD pathogenesis, MMP-12 is considered. We investigated the role of genetic polymorphism and protein level of MMP-12 in the COPD development among Poles.

Methods
We analyzed − 82 A > G SNP in the promoter region of MMP-12 gene (rs2276109) among 335 smoked COPD patients and 309 healthy individuals, including 110 smokers. Additionally, 60 COPD patients and 61 controls (23 smokers) were tested for serum levels of MMP-12 using ELISA. All subjects were analyzed for lung function using spirometry (FEV1% and FEV1/FVC parameters).

Results
We observed that -82G allele and -82GG homozygous genotype frequencies of the SNP rs2276109 were significantly lower in COPD patients than in controls (12.5% vs 16.9%, respectively; X2 = 4.742, p = 0.02 for allele and 0.5% vs 3.9%, respectively; X2 = 9.0331, p = 0.01 for genotype). Moreover, -82G allele was more frequent in controls smokers than in non-smokers (22.3% vs 14.1%, X2 = 6.7588, p = 0.01). Serum level of MMP-12 was significantly higher in COPD patients than in controls groups (6.8 ng/ml vs 3.3 ng/ml, respectively; F = 7.433, p < 0.0001), although independently of analyzed gene polymorphisms. Additionally, no correlation between parameters of lung function (FEV1% and FEV1/FVC) and protein level was found.

Conclusions
We found that -82G allele of SNP rs2276109 was associated with reduced risk of COPD, and COPD patients released more MMP-12 than healthy individuals, but independently on this SNP.

Keywords
COPD Metalloproteinase 12 Genetics SNP ELISA

β-Lapachone protects against doxorubicin-induced nephrotoxicity via NAD+/AMPK/NF-kB in mice

Posted by D Sanajou, V Hosseini, Y Marandi, et al. on 2019-01-30 19:07:04

Abstract

beta-Lapachone (B-LAP) is a natural naphtaquinone with established anti-oxidative stress and anti-cancer activities. We aimed to investigate B-LAP protective potential against doxorubicin (DOX)-induced nephrotoxicity in mice. The mice received an oral dose of B-LAP followed by a single intraperitoneal injection of 20 mg/kg DOX a day later. They were then treated for 4 days with 1.25 mg/kg, 2.5 mg/kg, and 5 mg/kg doses of B-LAP. Renal levels of NAD+/NADH ratios, p-AMPK alpha, p-NF-kB p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) along with renal expressions of TNF-alpha, IL-1beta, and IL-6 were examined. Serum levels of kidney function markers as well as renal histopathology were also investigated. In addition to increasing the activities of p-AMPK alpha, B-LAP elevated NAD+/NADH ratios in the kidneys and decreased the renal levels of nuclear p-NF-kB and its correspondent downstream effectors TNF-alpha, IL-1beta, IL-6, and iNOS in the kidneys. Also, B-LAP effectively ameliorated renal architectural changes and attenuated serum levels of urea, creatinine, and cystatin C. Collectively, these findings suggest the protective actions of B-LAP against DOX-induced nephrotoxicity in mice.

Abstract

Objective
The combination of pharmacological hypothermia - dihydrocapsaicin (DHC) and intra-arterial regional cooling infusions (RCI) was found to enhance the efficiency of hypothermia and efficacy of hypothermia-induced neuroprotection in acute ischemic stroke. The aim of this study was to explore whether the combination could induce a long-term neuroprotective effects, as well as the underlying mechanism.

Methods
Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2?h using intraluminal hollow filament. The ischemic rats were randomized to receive pharmacological hypothermia by intraperitoneal (i.p.) injection of DHC, physical hypothermia by RCI of 6?ml cold saline (4℃), the combination, and no treatment. Over a 21-day period, brain damage was determined by infarct volume with MRI, and neurological deficit with grid-walking and beam balance tests. Blood brain barrier (BBB) was assessed by Evans-Blue (EB) contents. Inflammatory cytokines were determined in peri-infarct area by antibody array and ELISA.

Results
The combination of DHC and RCI reduced (p?<?0.05) infarct volume and neurologic deficit after stroke. BBB leakage and pro-inflammatory cytokines (IFN-gamma, IL-2, and TNF-alpha) were significantly decreased (p?<?0.05) because of the combination, while protective cytokines (IL-4 and IL-10) were increased (p?<?0.05) in the peri-infarct area.

Conclusions
The combination approach enhanced the efficacy of hypothermia-induced neuroprotection following ischemic stroke. Our findings provide a hint to translate the combination method from bench to bedside.

Abstract

Parkinson disease (PD) is the second most common aging-related neurodegenerative disease worldwide. Oxidative stress and neuroinflammation are critical events in the degeneration of dopaminergic neurons in PD. In this study, we found that DDO-7263, a novel Nrf2-ARE activator reported by us, has ideal therapeutic effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson disease in mice. DDO-7263 improved the behavioral abnormalities induced by MPTP in mice, significantly attenuated chemically induced dopaminergic neuron loss of tyrosine hydroxylase (TH) in the substantia nigra (SN) and striatum of the mouse brain and inhibited the secretion of inflammatory factors. In addition, DDO-7263 protected PC12 neurons from H2O2-induced oxidative damage. The neuroprotective effects of DDO-7263 were confirmed both in vitro and in vivo models. Further studies showed that the neuroprotective effect of DDO-7263 was mediated by the activation of Nrf2-ARE signaling pathway and the inhibition of NLRP3 inflammasome activation. DDO-7263 induced NLRP3 inflammasome inhibition is dependent on Nrf2 activation. This conclusion was also verified in THP-1-derived macrophages (THP-Ms). DDO-7263 significantly inhibited NLRP3 activation, cleaved caspase-1 production and IL-1beta protein expression in ATP-LPS-exposed THP-Ms cells. The pharmacokinetic parameters and tissue distribution results indicated that DDO-7263 has a brain tissue targeting function. All these lines of evidence show that DDO-7263 has ideal therapeutic effects on neurodegenerative diseases such as PD.

Abstract

Objectives

Transfusion of umbilical cord‐derived mesenchymal stem cells (UC‐MSCs) is a novel strategy for treatment of various liver diseases. However, the therapeutic effect of UC‐MSCs is limited because only a few UC‐MSCs migrate towards the damaged regions. In this study, we observed the effects of autophagy on the migration of UC‐MSCs in vitro and in a model of liver ischaemia/reperfusion (I/R) injury.

Materials and Methods

We investigated the effects of autophagy on the status of the cell, release of anti‐inflammatory factors and migration of UC‐MSCs in vitro. The therapeutic effects and in vivo migration of rapamycin‐preconditioned UC‐MSCs were observed in a C57/B6 mouse model of liver I/R injury.

Results

Induction of autophagy by rapamycin enhanced the ability of UC‐MSCs to migrate and release anti‐inflammatory cytokines as well as increased expression of CXCR4 without affecting cell viability. Inhibition of CXCR4 activation markedly decreased migration of these cells. In a mouse model of liver I/R injury, we found significantly upregulated expression of CXCR12 in the damaged liver. More rapamycin‐preconditioned UC‐MSCs migrated towards the ischaemic regions than 3‐methyladenine‐preconditioned or non‐preconditioned UC‐MSCs, leading to improvement in hepatic performance, pathological changes and levels of inflammatory cytokines. These effects were abolished by AMD3100.

Conclusions

Preconditioning of UC‐MSCs by rapamycin afforded increased protection against liver I/R injury by enhancing immunosuppression and strengthening the homing and migratory capacity of these cells via the CXCR4/CXCL12 axis.

Page 3 of 191
Hot paper
Hot Genes
ALCAM ACE KSR2 ASPRO C19orf80 Gdf5 Trap1a Atf2
Top Searches
Ubiquitin ELISA Ubiquitin-protein ligase metalloproteinase Asprosin Tumor necrosis TRAP1A vitamin d
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter