Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
Interference in mevalonate pathway ameliorates homocysteine-induced endothelium-dysfunction
Update time:2013-06-26 00:16:00   【 Font: Large  Medium Small

Abstract

Homocysteine is a risk factor for atherosclerosis and hypertension and induces endothelium-dysfunction. Accumulation of cholesterol and reactive oxygen species plays a key role in the endothelium-dysfunction. This study investigated the hypothesis of an involvement of mevalonate pathway and oxidative pathway in homocysteine-induced endothelial damage. Homocysteine induced impairment of the endothelium-dependent vasorelaxation of rat aortic rings by isometric tension, while it also reduced the nitric oxide level and the nitric oxide synthase activity in human umbilical vein endothelial cells, followed by accumulation of superoxide anion and cholesterol. However, the level of asymmetric dimethylarginine remained unaffected by homocysteine. The adverse effect of homocysteine on endothelial function was found to be partially enhanced either by squalestatin-reducing cholesterol or by superoxide dismutase-reducing superoxide anion. Moreover, this effect of homocysteine could be completely ameliorated by simvastatin, very similar to that of cotreatment of squalestatin and superoxide dismutase. Respectively, mevalonolactone partly or squalene fully attenuated the effect of simvastatin or squalestatin on homocysteine-induced endothelial dysfunction. In conclusion, our results suggested that the mevalonate pathway mediates homocysteine-induced endothelium dysfunction besides the oxidative pathway. Interference in the mevalonate pathway and oxidative pathway provides effective protection of endothelial function.

Cited products
Source:European Journal of Pharmacology      by Biqi Zhanga, b, Lihong Qiua, Michael Fub, Shenjiang Hua
Hot Genes
Top Searches
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.com.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

鄂ICP备10015095号-1

鄂公网安备 42018502005535号

Twitter